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Abstract We study the Anderson Parabolic Model for a random medium which is a product
of an i.i.d. space-like random field and a white noise. The model has long range space-time
correlations and is intermediate between the stationary case and the “turbulent” one, which
were studied in previous works. Under some natural assumptions on the distribution of the
space potential, we prove existence and uniqueness, and derive the long time asymptotics for
the annealed moments, and the “semi-annealed” ones, for which expectation is taken only
w.r.t. the white noise. A conjecture for the fully quenched case is discussed on a simplified
model.

1 Introduction. Statement of the results

The Anderson parabolic problem on the lattice Z
d , d ≥ 1, has the general form

∂u

∂t
= Hu := κ�u + V (t, x,ω)u, u(0, x) ≡ 1, x ∈ Z

d , t ∈ R+, (1.1)
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where H = κ� + V is a random Schrödinger operator, � is the lattice Laplacian

�ψ = 1

2d

∑

x′:|x−x′|=1

(ψ(x ′) − ψ(x)) (1.2)

and V is a random potential, which can be stationary: V (t, x,ω) = V (x,ω). ω ∈ Ω denotes
a particular realization of the random medium {V (·)}, which is homogeneous and ergodic in
space-time, or in space for the stationary case.

The stationary case was studied in several papers by Gärtner and Molchanov (see for
instance the basic publications [1, 2]). Non-stationary potentials, which are usually associ-
ated to the theory of magnetic fields in random flows (see [3]), under the assumption that
correlations are short-range in space and time, were the subject of the memoir [4]. For a
general discussion of the theory of random media and of their qualitative properties (such as
intermittency, localization etc.), see [5].

Space-time uncorrelated random media appear in many models, such as the discrete time
random walks in the recent paper [6].

In the present paper we consider the quasi-stationary case, for which

V (t, x) = ẇtV (x) (1.3)

where ẇt is the standard Gaussian white noise, i.e., the derivative of the standard Wiener
process, and {V (x) : x ∈ Z

d} are i.i.d. r.v.’s, independent of the white noise. Such a random
medium has, of course, long-range space-time correlations.

The idea of a quasi-stationary medium is due to K. Khanin, who proposed it for the
study of the growth of a random polymer in a random environment. Our model can be seen
as something intermediate between the time-stationary case V = V (x,ω) and the “turbu-
lent” case V = V (x,ω)ẇt (x), where {ẇt (x), x ∈ Z

d} are independent copies of the standard
white noise, independent of V (x,ω).

We assume that the random medium distribution is given by an independent pair: if
(Ωw,Fw,Pw) and (ΩV ,FV ,PV ) are the probability spaces of the white noise and the ran-
dom potential, then our probability space (Ω,F,P ) is a product: Ω = Ωw × ΩV , where
ωw = {w·}, and ωV = {V (·)}, and F = Fw ×FV , P = Pw × PV .

Expectations which refer to the environment are usually denoted as 〈·〉, with possible
pedices if the probability distribution is not P = Pw × PV .

It is usual to assume a Gaussian distribution for the potential, but this is not appropriate
for our case, since the annealed moments would not exist (see remark at the end of Sect. 4).
We deal instead with Weibull distributions (see, e.g. [9]). The random variable ξ is said to
have a Weibull distribution with parameters α > 1 and c > 0 if, for all a > 0

P ({ξ ≥ a}) = e−c aα

α . (1.4)

For the purposes of the present paper it would be natural to assume that the quantities V 2(x)

have a distribution with regular tails. This is a more general class of distributions, for which
(1.4) is replaced by P ({ξ ≥ a}) = exp{− aα

α
L(a)}, for some slowly varying (in the sense of

Karamata) function L. Under mild technical assumption on L(a) (“normality”, i.e., L′(a) =
o(L(a)/a) as a → ∞), using the results of the monograph [7], one could easily treat this

more general case. One can see, e.g., that 〈etξ 〉 = e
tα

′
α′ 
(t), where 1

α
+ 1

α′ = 1 and 
(t) is again
a normal slowly varying function, related to L by a Legendre transform, up to equivalence.

For applications of the results of [7] to limit theorems, in a setting similar to ours, see [8].
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In this paper, in order to keep technicalities to a minimum, we assume that the random
variables {V (x) : x ∈ Z

d} are i.i.d. and such that the quantities V 2(x)/2 have a Weibull
distribution (1.4).

Our central object is the (formal) parabolic equation

∂u

∂t
= Hu := κ�u + V (x,ω)ẇtu, u(0, x) ≡ 1, t ≥ 0, x ∈ Z

d . (1.5)

We give a precise mathematical meaning to the stochastic partial differential equation (1.5)
in some appropriate functional space, by stating its equivalence to the integral equation

u(t, x) = 1 + κ

∫ t

0
�u(s, x)ds + V (x,ω)

∫ t

0
u(s, x) ◦ dws, (1.6)

where the last integral is understood in the Stratonovich sense. Such interpretation, as shown
in Sect. 3, leads to the Feynman–Kac representation of the solution

u(t, x) = Exe
∫ t

0 V (Xs ,ω)dwt−s , (1.7)

where Xt, t ≥ 0 is the continuous-time random walk on Z
d with generator κ�, and Ex

denotes expectation with respect to the random walk Xs starting at x: X0 = x.
Questions of existence and uniqueness are deferred to Sect. 3.

Remark As Xs is a random walk on Z
d , V (Xs,ω) is piecewise constant and takes a finite

number of values, a.e. with respect to the random walk measure. So there is no difference
between the Ito and Stratonovich interpretations of the integral

∫ t

0 V (Xs,ω)dwt−s .

The fast decay of the tails of the potential distribution (1.4) ensures, as we will see, that
all moments of the solution are finite for all t . We will consider the annealed moments

mp(t) = 〈up(t, x)〉 = 〈〈up(t, x)〉PV
〉Pw , p = 1,2, . . . (1.8)

which clearly do not depend on x, and the semi-annealed ones, corresponding to taking ex-
pectation only with respect to the white noise. The latter moments, by Gaussian integration,
are expressed as

Up(t, x1, x2, . . . , xp) := 〈u(t, x1)u(t, x2) . . . u(t, xp)〉Pw

= Ex1,...,xp e
1
2

∫ t
0 [V (X

(1)
s )+···+V (X

(p)
s )]2ds, (1.9)

where X(1)
s , . . . ,X

(p)
s are i.i.d. copies of the random walk, and Ex1,...,xp is the expectation for

fixed initial positions. Clearly mp(t) = 〈Up(t,0, . . . ,0)〉PV
.

The aim of this paper is to find the asymptotic behavior, as t → ∞, of the annealed and
semi-annealed moments mp(t) and Up(t,0, . . . ,0) of the solution u(t, ·). Our main results
are the following.

Theorem 1 Under the assumptions above, if H(t) := ln〈et
V 2(0)

2 〉, then, as t → ∞, the fol-
lowing asymptotics holds

mp(t) = eH(
p2 t

2 )−pκt+o(t), p = 1,2, . . . . (1.10)
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As for the semi-annealed moments we have an almost-sure result.

Theorem 2 Under the assumptions above, if Cd = ( αd
c

)
1
α , the following asymptotics holds,

as t → ∞, for PV -almost all realizations of the potential,

Up(t,0,0, . . . ,0) = eCdp2t ln
1
α t−pκt+o(t). (1.11)

In the proof of both Theorems 1 and 2 we will make use of the fact that, as it should be
expected for Weibull variables on the basis of the discussion in [2], the main contribution to
the moments comes from single peaks of |V (x,ω)|.

Proofs are given in Sects. 3 and 4. Section 2 contains some auxiliary results. The fully
quenched case is briefly treated in Sect. 5 in a simplified finite-dimensional version, which
is however a good illustration of the behavior of the real one.

The analysis of the fully quenched behavior of the original model is technically rather
complex and will be the object of future work.

Throughout the paper | · | will denote the euclidean norm for points of R
d or Z

d .

2 Some Technical Lemmas

Lemma 2.1 If ξ is the Weibull variable (1.4), then, as t → ∞, we have

H(α,c)(t) = ln〈etξ 〉 = tv∗(t)
α′ + α

2
lnv∗(t) + 1

2
ln

2πc

α − 1
+ o(1), (2.1)

where 1
α

+ 1
α′ = 1 and v∗(t) = ( t

c
)

1
α−1 . Moreover for any integer m ≥ 0,

〈ξmetξ 〉 = vm
∗ (t)eH(α,c)(t)(1 + o(1)). (2.2)

Proof Integrating by parts and introducing the function gα(x) = x − xα

α
, we find

〈ξmetξ 〉 = −
∫ ∞

0
xmetx d

dx
e−c xα

α dx = δm0 +
∫ ∞

0
xm−1(m + tx)etx−c xα

α dx

= δm0 + vm
∗ (t)

∫ ∞

0
eλgα(y)(m + λy)ym−1dy,

where we have set x = v∗(t)y and λ = tv∗(t) = c( t
c
)α′

. As λ → ∞, we apply the Laplace
method. The function gα(x) has a proper maximum at x = 1, with gα(1) = 1

α′ , and g
′′
α(1) =

−α + 1. Hence, by a standard result,

〈ξmetξ 〉 = vm
∗ (t)

√
2πλ

α − 1
e

tv∗(t)

α′ (1 + o(1)). (2.3)

For m = 0 we get (2.1), and for m > 0, expressing the right side of (2.3) in terms of eH(α,c)(t),
we get (2.2). �

The proof of Lemma 2.1 shows that the main contribution comes from around the point
x = v∗(t). This fact is made more precise by the following lemma.
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Lemma 2.2 Under the assumptions above we have, as t → ∞, for any δ > 0,

eH(α,c)(t) ∼ 〈etξ
I|ξ−v∗(t)|<δv∗(t)〉.

Proof In fact, by the previous arguments we see that

e
− λ

α′ 〈etξ
I|ξ−v∗|≥δv∗ 〉 ≤ e

− λ
α′ + λ

∫

|x−1|≥δ

e−λ(gα(1)−gα(x))dx ≤ cδe
−λsδ ,

where cδ and sδ are positive constants with sδ ∈ (0, gα(1) − gα(1 − δ)), and we made use of
the fact that gα(1) − gα(x) is a positive convex function with minimum at x = 1. �

Lemma 2.3 Let {Ṽ (x) : x ∈ Z
d} be i.i.d. variables with common Weibull distribution (1.4).

Then, for any choice of a > d−1 one can find almost-surely a positive number R0, depending
on the realization, such that the inequalities

Cd(lnR − a ln lnR)
1
α ≤ max

|x|≤R
U(x) ≤ Cd(lnR + a ln lnR)

1
α , (2.4)

hold, for R > R0, with Cd = ( αd
c

)
1
α .

Proof By (1.4), setting ln+(·) = max{ln(·),1}, we find

P ({Ṽ (x) > Cd(ln+ |x| + a ln+ ln+ |x|) 1
α }) = exp{−d ln+ |x| − ad ln+ ln+ |x|}.

The right side is summable, as ad > 1, and, by the first Borel–Cantelli lemma, we have a.s.,
as |x| → ∞, Ṽ (x) ≤ C(d ln |x| + a ln ln |x|), which implies the right inequality (2.4). Let
now nR be the cardinality of the set {x ∈ Z

d : |x| ≤ R}. Then for R large

P
({

max
|x|≤R

Ṽ (x) < Cd(lnR − a ln lnR)
1
α

})
=

(
1 − lnad R

Rd

)nR

∼ exp{−Bd lnad R}, (2.5)

where Bd = limR→∞ nR

Rd is the volume of the unit sphere in R
d . As ad > 1 the series

∑
x∈Zd e−Bd lnad+ |x| converges, so that, again by the Borel–Cantelli lemma, the left inequal-

ity (2.4) is eventually satisfied. �

3 Existence and Uniqueness Theorem

In this paragraph we will give existence and uniqueness results for the parabolic Anderson
model (1.5) with quasi-stationary potential, i.e., for the integral equation (1.6). V (x) will
always denote a single (deterministic) function. We introduce a weighted Hilbert space L2

σ ,
for 0 < σ < 1, of functions on Z

d , and, for any T > 0 a corresponding Hilbert space HT,σ of
functions u : [0, T ] × Z

d → L2
σ , depending on the Brownian motion w. The corresponding

inner products are

(f, g)σ =
∑

x∈Zd

f (x)ḡ(x)σ |x|,

(u, v)T ,σ =
∫ T

0
〈(u(s, ·), v(s, ·))σ 〉Pwds,

(3.1)

while ‖ · ‖σ and ‖ · ‖T ,σ denote the corresponding norms.
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Theorem 3.1 If V is a bounded function on Z
d , then (1.6) has, for all finite T , Pw-a.e., a

unique solution u ∈ HT,σ , such that Pw-a.e. u(t, x) ∈ L2
σ is continuous in [0, T ]. Moreover

u(t, x) can be represented in the form (1.7).

Proof It is well known that the Stratonovich integral in (1.6) can be written as

∫ t

0
u(s, x) ◦ dws =

∫ t

0
u(s, x)dws + V (x)

2

∫ t

0
u(s, x)ds,

where the first integral on the right is an Ito integral. Equation (1.6) then becomes

u(t, x) = 1 +
∫ t

0
Au(s, x)ds + V (x)

∫ t

0
u(s, x)dws, (3.2)

where Au(t, x) = κ�u(t, x) + V 2(x)

2 u(t, x). A is a bounded linear operator on L2
σ , with

norm ‖A‖ depending on κ,σ , and M =: supx |V (x)|.
To (3.2) we now apply the usual iteration scheme to prove existence: we set

un+1(t, x) = 1 +
∫ t

0
Aun(s, x)ds + V (x)

∫ t

0
un(s, x)dws, (3.3)

with initial point u0 ≡ 1. Passing to the differences vn(t, x) = un(t, x) − un−1(t, x), with
v0 = u0, by standard arguments (see [10]), one finds for any T > 0 and all t ∈ [0, T ], the
inequalities

〈‖vn+1(t, ·)‖2
σ 〉Pw ≤ KT

∫ t

0
〈‖vn(s, ·)‖2

σ 〉Pwds, KT = 2(T ‖A‖2 + M2), (3.4)

implying that ‖vn(t, ·)‖2
σ ≤ C0

(tKT )n

n! . Integrating in t we get convergence of the series
u(t, x) = 1 + ∑∞

n=1 vn(t, x) in the Hilbert space HT,σ .
A.s. convergence is given by a Borel–Cantelli argument (see [4]). We have

P
(

max
0≤t≤T

‖vn(t, ·)‖2
σ > 2−n

)

≤ P

(
2T

∫ T

0
‖Avn−1(s, ·)‖2

σ ds >
1

2n+1

)

+ P

(
2M2

∑

x

σ |x| max
0≤t≤T

(∫ t

0
vn−1(s, x)dws

)2

>
1

2n+1

)
.

Applying to the second term the well-known inequality 〈max0≤t≤T (
∫ t

0 v(s)dws)
2〉Pw ≤

4
∫ T

0 〈v2(s)〉Pwds it is easy to see that for some constant C̄

Pw

(
max

0≤t≤T
‖vn(t, ·)‖2

σ > 2−n
)

≤ C̄
(T KT )n

n! .

As the right side is summable, again by Borel–Cantelli, we see that for some non-negative
random variable ξ , max0≤t≤T ‖vn(t, ·)‖σ ≤ ξ2− n

2 , Pw-a.e. Therefore u(t, x), as a limit of
continuous functions on [0, T ] with values in L2

σ which converge uniformly, is continuous.
It is now easy to check that u(t, x) satisfies (3.2) in L2

σ .
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As for uniqueness, if v = u1 − u2 is the difference of two solutions, repeating the steps
that led to inequality (3.4) we get a Gromwall inequality for v, and hence, by a standard
procedure, uniqueness. We omit the details.

The proof that the solution is expressed by the Feynman–Kac formula (1.7) can be done,
as in [4] by taking a regularization of the white noise, i.e.,

ẇδ(t) = wδ

δ
I[0,δ)(t) + w2δ − wδ

δ
I[δ,2δ)(t) + · · · (3.5)

which leads to the regularized equation

∂uδ(t, x)

∂t
= κ�uδ(t, x) + ẇδ(t)V (x)uδ(t, x), uδ(0, x) = 1. (3.6)

The Feynman–Kac solution uδ(t, x) = Exe
∫ t

0 ẇδ (s)V (Xt−s )ds is the unique solution of the
problem (3.6) in L2

σ (see [4]). Let uδ(t, x) = ExFδ(t), u(t, x) = ExF (t), with

Fδ(t) = e
∫ t

0 ẇδ (t−s)V (Xs )ds , F (t) = e
∫ t

0 V (Xs )dwt−s .

If Px denotes the probability associated to the random walk starting at x, the function V (Xs),
for s ∈ [0, t] takes finitely many values Px -a.e., so that, as δ → 0, Fδ(t) → F(t), Px × Pw-
a.e. By Gaussian integration we have, for p ≥ 1,

〈|u(t, x)|p〉Pw ≤ Ex〈(F (t))p〉Pw = Exe
p2

2

∫ t
0 V 2(Xs )ds , (3.7)

〈|uδ(t, x)|p〉Pw ≤ Ex〈(Fδ(t))
p〉Pw = Exe

p2

2δ

∑n−1
k=0 (

∫ (k+1)δ
kδ

V (Xs )ds)2
(3.8)

(we take for simplicity δ = t/n, for some integer n > 1). By pointwise convergence and the
uniform bound (3.8), valid for all p ≥ 1, it is easy to see (using, e.g., the Egorov theorem),
that, as δ → 0, Fδ(t) → F(t) in Lp(Px × Pw), and hence uδ(t, x) → u(t, x) in Lp(Pw). For
p = 2 convergence in L2(Pw) and the uniform bound in x give

lim
δ→0

max
t∈[0,T ]

〈‖u(t, ·) − uδ(t, ·)‖2
σ 〉Pw = 0, (3.9)

which implies convergence of uδ in HT,σ .
As for the equation that is satisfied by the limiting function u, observe that

∫ t

0
ẇδ(s)uδ(s, x)ds =

n−1∑

k=0

(w(k+1)δ − wkδ)

×
[
uδ(kδ, x) + 1

δ

∫ (k+1)δ

kδ

[uδ(s, x) − uδ(kδ, x)]ds

]
.

The difference in the integral on the right is expressed, by (3.6), in integral form:

uδ(t + h,x) − uδ(t, x) = κ

∫ t+h

t

�uδ(s, x)ds + V (x)

∫ t+h

t

ẇδ(s)uδ(s, x)ds.

Substituting and taking the limit as δ → 0, one recovers all terms of (3.2).
Theorem 3.1 is proved. �
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If V is unbounded, we introduce, for any M > 0, the truncated potential VM(x) =
V (x)

|V (x)| min{|V (x)|,M} and the random elements

F (M)(t) = e
∫ t

0 VM(Xs )dwt−s , u(M)(t, x) = Exe
∫ t

0 VM(Xs )dwt−s .

u(t, x) will denote the expression (1.7). By the previous theorem, u(M)(t, x) ∈ L2
σ is the

unique solution of (3.2) with potential VM .

Theorem 3.2 Suppose that V 2(x) ≤ C(1 + |x|δ), for some constants C > 0 and δ ∈ (0,1).
Then, under the assumptions above, the following assertions hold.

(i) For all p ≥ 1, u(t, x) ∈ Lp(Pw), and, as M → ∞, for all (t, x) ∈ R+ × Z
d , the func-

tions u(M)(t, x) converge to u(t, x), in Lp(Pw), as well as Pw-a.e.
(ii) For any T > 0, u(t, x) ∈ HT,σ and satisfies (3.2) as an equation in L2

σ Pw-a.e.
(iii) The solution of (3.2) is unique in the class of the functions of HT,σ which are such

that, for any integer p ≥ 1, e−c̄p |x|α maxt∈[0,T ]〈(u(t, x))p〉Pw is bounded in x, for some
α ∈ (0,1) and some positive constants c̄p .

Proof As before, observe first, that, Px × Pw − a.e., F (M)(t) → F(t). Proceeding as for
(3.7) we see that for all p ≥ 1 we have

〈(u(M)(t, x))p〉Pw ≤ Exe
p2

2

∫ t
0 V 2

M
(Xs)ds ≤ Exe

p2

2

∫ t
0 V 2(Xs )ds = Ex〈(F (t))p〉Pw . (3.10)

Let nt be the number of jumps of the random walk up to time t (which is Poisson dis-
tributed with mean κt ). Then sup0≤s≤t |Xs | ≤ |x| + nt and sup0≤s≤t V

2(Xs) ≤ C(1 + (|x| +
nt )

δ) ≤ C(1 + |x|δ + nδ
t ), so that

Exe
p2

2

∫ t
0 V 2(Xs )ds ≤ e

Cp2 t
2 (1+|x|δ)

E(e
Cp2 t

2 nδ
t ) = Cp,t e

Cp2 t
2 |x|δ , (3.11)

where E denotes the average over nt , which is finite as δ ∈ (0,1). Therefore the last term in
(3.10) is bounded and u(M)(t, x) → u(t, x) in Lp(Pw) for all p ≥ 1. For convergence Pw-
a.e., let nM be the smallest integer n ≥ 0 such that C(1 + (|x| + n)δ) ≥ M2. If nT < nM , as
X0 = x, V (Xt) = VM(Xt) for t ∈ [0, T ], setting û(M)(t, x) = u(t, x) − u(M)(t, x), we have

‖û(M)(t, x)‖2
L2(Pw)

≤ 2Ex(e
2
∫ t

0 V 2(Xs )ds;nT ≥ nM) ≤ 2e2CT (1+|x|δ)
E(e2CT nδ

T ;nT ≥ nM)

≤ 2C2,T e2CT |x|δNT (nM), (3.12)

where NT (n) = e2CT nδ
(κT )n/n!, and the last inequality comes from the easy estimate

E(e2CT nδ
T ;nT ≥ n) ≤ e2CT nδ

(κT )n

n! E(e2CT nδ
T ). As NT (n) is summable, we get convergence a.e.,

and assertion (i) is proved.
Let R = (M2

C
−1)

1
δ , so that nM +|x| ≥ R, and set n0 = [R

2 ], where [·] denotes the integer
part. If |x| < n0, then nM ≥ n0, so that, for M (or n0) large we have, by (3.12),

〈‖û(M)(t, ·)‖2
σ 〉Pw ≤ C

(1)
T NT (n0)

∑

|x|<n0

e2CT |x|δ σ |x| + C
(2)
T

∑

|x|≥n0

e2CT |x|δ σ |x|

≤ C̄T max{NT (n0), σ
n0
2 }. (3.13)
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As the right side is summable, we have convergence Pw-a.e. in L2
σ , and u ∈ HT,σ .

To show that (3.2) is satisfied, consider the difference of the right sides for u and for
u(M). It is a sum of three terms: D

(1)
M (t, x) + D

(2)
M (t, x) + D

(3)
M (t, x):

D
(1)
M (t, x) =

∫ t

0
�û(M)(s, x)ds,

D
(2)
M (t, x) = V 2

M(x)

2

∫ t

0
u(M)(s, x)ds − V 2(x)

2

∫ t

0
u(s, x)ds,

D
(3)
M (t, x) = V (x)

∫ t

0
u(s, x)dws − VM(x)

∫ t

0
u(M)(s, x)dws.

For the expected value of the L2
σ -norm of the first term we find, by (3.13)

〈
sup

t∈[0,T ]
‖D(1)

M (t, ·)‖2
σ

〉

Pw

≤ T

∫ T

0
〈‖�û(M)(t, ·)‖2

σ 〉Pwds

≤ CT ‖�‖2 max{NT (n0), σ
n0
2 },

where ‖�‖ is the operator norm of the Laplacian (1.2) in L2
σ . By the usual Borel–Cantelli

argument this term vanishes Pw-a.e. as M → ∞.
Similar considerations give the same result for the other two terms as well. We leave the

details to the reader. Assertion (ii) is proved.
To prove uniqueness, we use a truncation procedure. Let BR = {x ∈ Z

d : |x| ≤ R}, and let
∂BR = {x ∈ Z

d \ BR : miny∈BR
|x − y| = 1} denote its boundary. We consider the solution

of (3.2) with initial values u0(x), x ∈ BR and boundary conditions u0(t, x), x ∈ ∂BR , and
clearly any solution of (3.2) can be represented as the solution of the truncated problem, by
assigning the appropriate boundary values. The difference of any two solutions v(t, x) =
u2(t, x) − u1(t, x) with the same initial conditions is represented in the form

v(t, x) = Ex[e
∫ τR

0 V (Xs)dwt−s v(t − τR,XτR )IτR≤t ],
where τR is the first hitting time of the set ∂BR (this is a consequence of the strong Markov
property, see [4]). Observe that the potential V is bounded in BR , so we have a unique
solution as in Theorem 3.1 [4].

By the Schwartz and Hölder inequalities, recalling the bound on the moments of v(t, x),
repeating the steps that led to inequality (3.12), we get

〈v2(t, x)〉Pw ≤ Ex(〈e2
∫ τR

0 V (Xs )dwt−s v2(t − τR,XτR )〉Pw ; τR ≤ t)

≤ max
s∈[0,t]

max
y∈∂BR

〈v4(s, y)〉 1
2
Pw

Ex(e
8
∫ τR

0 V 2(Xs )ds;nt ≥ R)

≤ c0 exp{c1R
α + c2R

δ − c3R},
for some positive constants c0, . . . , c3 depending on t . As R is arbitrary, it must be
〈‖v(t, ·)‖2

σ 〉Pw = 0. Theorem 3.2 is proved. �

Corollary 3.3 All moments of the solution are finite and can be written in the form

Up(t, x1, . . . , xp) = 〈u(t, x1) · · · · · u(t, xp)〉Pw = Ex1···xp e
1
2

∫ t
0 (V (X1

s )+···+V (X
p
s ))2ds (3.14)
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where Ex1···xp denotes expectation with respect to p independent random walks on Z
d with

initial positions x1, . . . , xp . The moments (3.14) satisfy the initial value problem

∂Up

∂t
= κ(�x1 + · · · + �xp)Up + 1

2

(
p∑

i=1

V (xi)

)2

Up,

Up(0, x1, . . . , xp) = 1.

(3.15)

Proof The first assertion follows from the representation (1.7) and the usual rules of inte-
gration over the Brownian motion. Equation (3.15) is a consequence of (3.14). �

Remark Theorem 3.2 depends in an essential way on the choice of the initial condition
u(0, x) ≡ 1. The initial condition should not be fast increasing in x. For a general u(0, x) ∈
L2

σ (Zd) the solution of (3.2) with unbounded V (x) does not exist.

4 Proofs of Theorems 1 and 2

Throughout this paragraph the random variables {V (x) : x ∈ Z
d} are i.i.d. and such that

V 2(x)/2 has the Weibull distribution (1.4) for some α > 1. By Lemma 2.3, and Theorem 3.2
for a.a. realizations of {V (x) : x ∈ Z

d} there is a unique solution u(t, x) of (3.2), given by
the Feynman–Kac formula (1.7).

The following preliminary lemma, is analogous to the corresponding result in [1].

Lemma 4.1 For all p ≥ 1 and t ≥ 0 the following inequalities hold

eH(p2t)−κpt ≤ mp(t) ≤ eH(p2t). (4.1)

Proof By the usual Gaussian integration formula we have

〈(u(t,0))p〉Pw = 〈E0,...,0[e
∫ t

0
∑p

j=1 V (X
(j)
s )dwt−s ]〉Pw

= E0,...,0[e 1
2

∫ t
0 (

∑p
j=1 V (X

(j)
s ))2ds]. (4.2)

If now n
(j)
t , j = 1, . . . , p are the number of jumps, up to time t , of the p independent random

walks, with initial condition X
(j)

0 = 0, j = 1, . . . , p, the simple inequality

mp(t) = 〈(u(t,0))p〉 = 〈E0,...,0[e 1
2

∫ t
0 (

∑p
j=1 V (X

(j)
s ))2ds]〉PV

≥ 〈e p2 t
2 V 2(0)〉PV

p∏

j=1

P (n
(j)
t = 0) = eH(p2t)−κpt , (4.3)

gives the bound on the left of (4.1). Moreover, by the Jensen inequality, we have

e
1
2

∫ t
0 (

∑p
j=1 V (X

(j)
s ))2ds = e

1
2t

∫ t
0 t (

∑p
j=1 V (X

(j)
s ))2ds

≤ 1

t

∫ t

0
e

t
2 (

∑p
j=1 V (X

(j)
s ))2

ds ≤ 1

t

∫ t

0
e

pt
2

∑p
j=1 V 2(X

(j)
s )

ds,
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and it is now easy to get the bound on the right

〈E0,...,0[e 1
2

∫ t
0 (

∑p
j=1 V (X

(j)
s ))2ds]〉PV

≤ 1

t
E0,...,0

∫ t

0
〈e pt

2
∑p

j=1 V 2(X
(j)
s )〉PV

ds

≤ 1

t
E0,...,0

∫ t

0

(
p∏

j=1

〈e p2 t
2 V 2(X

(j)
s )〉PV

) 1
p

ds = eH(p2t).

Lemma 4.1 is proved. �

Remark Lemma 4.1 already implies intermittency for the annealed model in all dimension
d ≥ 1 (see [4]).

In the second step, as in Theorem 3.2, we control the growth of the potential by a bound
on the number of jumps. We set n̄t = max{n(j)

t , j = 1, . . . , p}, where n
(j)
t , j = 1, . . . , p are

as in the proof of Lemma 4.1. The maximum of V 2(x)/2 on BR = {|x| ≤ R} is denoted
MR := max{V 2(x)/2 : |x| ≤ R}.

Lemma 4.2 Under the assumptions above, if rt = [bκt], for b(lnb − 1) > p, where [·]
denotes the integer part, we have, as t → ∞,

mp(t) ∼ 〈E0,...,0[I{n̄t ≤rt }e
1
2

∫ t
0 (

∑p
j=1 V (X

(j)
s ))2ds]〉PV

. (4.4)

Proof Clearly P (n̄t = r) ≤ ∑p

j=1 P (n
(j)
t = r) = pP (nt = r), where nt is Poisson distrib-

uted with mean κt . The contribution of large values of n̄t is then bounded by

∞∑

r=rt+1

〈E0,...,0[I{n̄t =r}e
1
2

∫ t
0 (

∑p
k=1 V (X

(k)
s ))2ds]〉PV

≤
∞∑

r=rt+1

P (n̄t = r)〈etp2Mr 〉PV
≤ p

∞∑

r=rt+1

P (nt = r)〈etp2Mr 〉PV
. (4.5)

Simple geometric considerations give, for some constant Kd ,

〈ep2Mr t 〉PV
=

∑

|x|≤r

〈etp2 V 2(x)
2 I{Mr= V 2(x)

2 }〉PV
≤ Kdr

deH(p2t). (4.6)

The right side of (4.5) is then bounded by pKde
H(p2t)

E(nd
t ;nt > rt ). We have E(nd

t ;nt >

rt ) ≤ (κt)rt

rt ! E[(rt + nt )
d ] and, for large t , E[(rt + nt )

d ] ≤ c̃d (κt + rt )
d . Therefore the right

side of (4.5) is bounded by the expression

exp{H(p2t) + rt lnκt − rt ln rt + rt +O(lnκt)}
= exp{H(p2t) − κtb(lnb − 1) +O(ln t)},

which, by our assumption on b, is o(eH(p2t)−κpt ).
By the result of Lemma 4.1, the proof of Lemma 4.2 is achieved. �
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We now turn to the proof of Theorem 1. We make use of the fact that, by Lemma 2.2,

the main contribution to the integral 〈et
V 2(x)

2 〉 comes from a small interval around the point
V 2(x)

2 = v∗(t).

Proof of Theorem 1 We will prove that lnmp(t) ≤ H(p2t) − κpt + o(t), which, taking into
account Lemma 4.1, completes the proof of Theorem 1. As in [5], the proof is based on the
spectral analysis of the operator on the right side of (3.15).

We consider only the case p = 1, as there is no difficulty in extending the result to any
p > 1. We set for brevity U(t) := U1(t,0), where U1(t, x) is the solution of (3.15) for p = 1,
and is given by the Feynman–Kac formula (1.9):

U(t) = E0e
1
2

∫ t
0 V 2(Xs )ds , (4.7)

which is basic for our proofs. Consider the discrete cube Sd
t = {x ∈ Z

d : |xi | ≤ rt , i =
1, . . . , d}, where rt is as in the proof of Lemma 4.2. Proceeding as in [5], we denote by
Ũ (t, x) the solution of (3.15) for p = 1, and with periodic boundary conditions on Sd

t .
Ũ (t, x) is a solution of the problem

∂Ũ(t, x)

∂t
= κ�Ũ(t, x) + V 2(x)

2
Ũ (t, x), Ũ(t,0) ≡ 1, x ∈ Sd

t (4.8)

on the “discrete torus Sd
t ”, obtained by identifying the pairs of opposite sides, and is given

by the same Feynman–Kac formula (4.7) except that the potential V is replaced by a new po-
tential V̂ which is defined by setting V̂ (x) = V (x) for x ∈ Sd

t , and is extended by periodicity
to all Z

d . Consider now the truncated solutions

U∗(t) = E0(e
1
2

∫ t
0 V 2(Xs )ds

I{n̄t ≤rt }), Ũ∗(t) = E0(e
1
2

∫ t
0 V̂ 2(Xs )ds

I{n̄t ≤rt }). (4.9)

Clearly U∗(t) = Ũ∗(t), and by the same Lemma 4.2, we have, as t → ∞,

m1(t) = 〈U(t)〉PV
∼ 〈U∗(t)〉PV

= 〈Ũ∗(t)〉PV
≤ 〈Ũ (t,0)〉PV

. (4.10)

The operator on the right side of (4.8) has a discrete spectrum, Ek,t , k = 1,2 . . . , |Sd
t |,

where |Sd
t | = (2rt + 1)d is the number of points of Sd

t , and if ‖ · ‖ denotes the norm in
L2(S

d
t ), we have (as in [5]) that

〈Ũ (t,0)〉PV
≤ ‖Ũ (0, ·)‖〈et maxk{Ek,t }〉PV

= |Sd
t | 1

2 〈et maxk {Ek,t }〉PV
. (4.11)

As the distribution is continuous, there is a.s. only one site x1 where the highest peak

ξ (1) = max{ V 2(x)

2 : x ∈ Sd
t } is achieved, and the second highest peak ξ (2) = max{ V 2(x)

2 : x ∈
Sd

t , x �= x1} is also achieved only at one site (a.s.), denoted x2. Observe that maxk{Ek,t } ≤
maxk{Ẽk,t }, where Ẽk,t , k = 1,2, . . . , |Sd

t | are the eigenvalues of the operator

H̃ = κ� + ξ (2) + δ0(x)(ξ (1) − ξ (2)).
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Moreover maxk Ẽk,t = ξ (2) + ft (ξ
(1) − ξ (2)), where ft is given in [5] and satisfies the in-

equality ft (a) ≤ a. The expected value in (4.11) is then bounded by

〈et[ξ(2)+ft (ξ
(1)−ξ(2))]〉PV

= |Sd
t |(|Sd

t | − 1)

∫ ∞

0
dy(F (y))|Sd

t |−2φ(y)

∫ ∞

y

dxφ(x)et[y+ft (x−y)]

≤ |Sd
t |2I (t),

I (t) =
∫ ∞

0
dyφ(y)

∫ ∞

y

dxφ(x)et[y+ft (x−y)],

(4.12)

where φ(x) = ce−c xα

α xα−1 is the Weibull density and F(x) = ∫ x

0 φ(t)dt is its distribution
function. If now δ(t) is a positive function such that δ(t) ↑ ∞, as t → ∞, using the inequal-
ity ft (a) ≤ a, we find

∫ ∞

0
duφ(u)

∫ u+δ(t)

u

dvφ(v)et[u+ft (v−u)]

≤
∫ ∞

0
duφ(u)

∫ u+δ(t)

u

φ(v)etvdv

≤ etδ(t)

∫ ∞

0
φ(u)Φ(u)etudu = 1

2
etδ(t)+H(α,2c)(t), (4.13)

where Φ(x) = e−c xα

α and we take into account that 2φ(y)Φ(y) = φ2(y) is the density of
the Weibull distribution with parameters (α,2c). By Lemma 2.1, for large t , H(α,2c)(t) ∼
2− 1

α−1 H(α,c)(t). Hence, if δ(t) = o(v∗(t)), the integral (4.13) is o(eH(t)−κt ), for large t .
For v − u ≥ δ(t), we use the asymptotics ft (a) = a − κ +O( 1

a
), as a → ∞. We have

∫ ∞

0
duφ(u)

∫ ∞

u+δ(t)

φ(v)et[u+ft (v−u)]dv

= e−κt+o(t)

∫ ∞

0
duφ(u)

∫ ∞

u+δ(t)

φ(v)etvdv

≤ e−κt+o(t)

∫ ∞

0
duφ(u)

∫ ∞

0
φ(v)etvdv = eH(t)−κt+o(t). (4.14)

By (4.11), (4.12) and (4.14), we see that, for some constant K̄d ,

〈Ũ (t,0)〉PV
≤ K̄dr

5d
2

t I (t) = eH(t)−κt+o(t),

and, recalling (4.1) and (4.10), Theorem 1 is proved. �

Proof of Theorem 2 As for Theorem 1, the proof is based on a lower and an upper estimate,
and we will carry it out in detail only for p = 1. The extension for p > 1, is, as in the
previous case, straightforward.

Let r̂t := t

ln2+ t
, and set r̃t = √

drt , where rt is as in Lemma 4.2. We shall prove that, as

t → ∞, a.s. with respect to the distribution of the potential we have

etMr̂t
−κt+o(t) ≤ U(t) ≤ etMr̃t

−κt+o(t). (4.15)



164 J Stat Phys (2007) 129: 151–169

By Lemma 2.3, we have a.s., as t → ∞, Mr̂t = Cd ln
1
α t +o(1) and Mr̃t −Mr̂t = o(1). Hence

the inequalities (4.15) imply Theorem 2.
Lower bound. We take into account in the expectation (4.7) only the contribution coming

from a path which spends “most of the time” at the point x∗ (which is unique a.s.) where
V 2(x)

2 attains the maximum in the sphere with center at the origin and radius r̂t . More pre-
cisely, we consider only the contribution of the trajectories which attain the maximal point
at some time τ ∈ (0, t), and then stay there up to time t , so that

U(t) ≥ P (Xτ = x∗)e(t−τ)Mr̂t e−κ(t−τ). (4.16)

For x ∈ Z
d , let 
(x) denote the minimal length of a path made of nearest neighbor bonds

of Z
d starting at the origin and ending up at x. The probability of attaining x at time τ along

a path of length 
(x) with a minimal number of jumps is a lower bound:

P (Xτ = x) ≥ (κτ)
(x) e−κτ

(2d)
(x)
(x)! := qτ (x).

Clearly |x| ≤ 
(x) ≤ √
d|x|, and it is easy to see that, as r̂t → ∞, |x∗| → ∞ as well (a.s.).

Hence we can apply the Stirling formula, and taking into account that 
(x∗) ≤ √
dr̂t , we find

for t large enough

lnqτ (x∗) = 
(x∗)
[

ln
κτ

2d
− ln
(x∗) + 1

]
− κτ −O(ln
(x∗))

≥ −κτ − 2
(x∗) ln
(x∗) = −κτ +O
(

t

ln t

)
.

Inequality (4.16) now gives lnU(t) ≥ tMr̂t − κt + o(t), i.e., the lower bound (4.15).
Upper bound. As a first step we prove that the asymptotics of U(t), a.e. with respect to

the distribution of the potential, is the same as that of the quantity U∗(t) introduced in (4.9).
We have

0 ≤ U(t) − U∗(t) ≤ E0(I{nt >rt }e
1
2

∫ t
0 V 2(Xs )ds)

=
∞∑

r=rt+1

E0(I{nt =r}e
1
2

∫ t
0 V 2(Xs )ds)

≤
∞∑

r=rt+1

etMr P (nt = r) = etMrt E(et(Mnt −Mrt );nt > rt ). (4.17)

We now use again Lemma 2.3, and evaluate the mean in (4.17) with the help of the

Stirling approximation. Observing that exp{ct (lnβ(k + rt ) − lnβ rt )}
(
rt +k

k

)−1
< 1, for k ≥ 1,

for any c > 0 and β ∈ (0,1), if t is large enough, we get

U(t) − U∗(t) ≤ etMrt
(κt)rt

rt ! = exp{tMrt − κtb(lnb − 1) + o(ln t)}. (4.18)

As Mrt − Mr̂t = o(1), a.s., as t → ∞, by our choice of b and the lower bound (4.15), this
quantity is o(U(t)). In analogy with (4.10) we now have

U(t) ∼ U∗(t) = Ũ∗(t) ≤ Ũ (t,0), (4.19)
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and we use spectral analysis for the solution Ũ (t,0) of the problem (4.8), much in the same
way as it was done in the proof of Theorem 1.

As a first step we prove a lemma which shows that the high peaks cannot be too close.

As set of high peaks we take those points of Sd
t where V 2(x)

2 > Bt := Cd((1 − ε) ln t)
1
α , for

some ε ∈ (0, 1
2 ), where Cd is given in Lemma 2.3. Let Pt be the set of such points.

Lemma 4.3 Let Π̃t = {(x1, x2) ∈ Pt ×Pt : |x1 −x2| < tδ}, with δ +2ε < 1. Then, for almost
all realizations of the potential, Π̃t = ∅, if t is large enough.

Proof The proof is again based on a Borel–Cantelli argument. Let s = s(t) > 0 be such that
lim supt→∞

s(t)

t
= 0 and consider the set Πt,s = {(x1, x2) ∈ Pt × Pt : |x1 − x2| < (t + s)δ}.

We have

P (Πt,s �= ∅) ≤
∑

x∈Sd
t

P (V 2(x) > 2Bt)

(
1 −

∏

x′ �=x

|x−x′|<(t+s)δ

P (V 2(x ′) ≤ 2Bt)

)

≤ Ctd

td(1−ε)

(
1 −

(
1 − 1

td(1−ε)

)nt
)

∼ Ctdnt

t2d(1−ε)
∼ C̄td(−1+2ε+δ), (4.20)

where C, C̄ are constants, nt is the cardinality of the set {x ′ �= x : |x −x ′| < (t + s)δ}, and we
have taken into account that nt

td(1−ε) � tδd

td(1−ε) → 0, as ε+δ < 1. The right side of (4.20) is then
summable over a sequence tk = kr , k = 1,2, . . . , if we take r = 1 for β := d(1−2ε − δ) > 1
(which is always the case if d > 1 and ε, δ are small enough), and r such that rβ > 1 for
β ≤ 1. Take moreover s(t) = (t

1
r + 1)r − t , so that tk+1 = tk + s(tk). By the Borel–Cantelli

lemma Πtk,s(tk) = ∅ almost surely for k large enough, and Π̃t ⊆ Πtk,s(tk) for all t ∈ [tk, tk+1].
Lemma 4.3 is proved. �

Conclusion of the proof of Theorem 2 (upper bound). Consider again the discrete spec-
trum Ek,t , k = 1,2, . . . , |Sd

t | of the operator on the right of (4.8). For the highest value

one finds maxk Ek,t ≤ Bt + maxk Ēk,t , where, as above, Bt = Cd((1 − ε) ln t)
1
α , and Ēk,t ,

k = 1,2, . . . , |Sd
t |, are the eigenvalues of the operator H̄ = κ� + ∑

y∈Pt
ξ(y) on Sd

t , with a

potential ξ(y) := V 2(y)

2 − Bt acting only at the high peaks.
For the spectrum of H̄ we use a result from the theory of random Schrödinger operators

([5], Lemma 3.1). As maxy∈Sd
t
ξ(y) → ∞ and the minimal distance between the points of

Pt diverges (Lemmas 2.3 and 4.3), there is a function δ(t), with limt→∞ δ(t) = 0, such that
the spectrum of H̄ is contained in the interval [0,maxx∈Pt ξ(x) − κ + δ(t)).

Taking into account that |x| ≤ r̃t if x ∈ Sd
t , we have, as t → ∞,

max
k

Ek,t ≤ max
x∈Sd

t

V 2(x)

2
− κ + o(1) ≤ Mr̃t − κ + o(1).

Recalling now the relations (4.19), the upper bound in (4.15) is proved. �

Remark (The case of Gaussian variables) If the variables V (x) have a standard Gaussian
distribution, as it is assumed for the stationary problem in [5], there is no asymptotics of
the kind stated by Lemma 2.1, as the exponential moment diverges for t > 1. One could
however study the behavior of the semi-annealed moments Up and obtain a result analogous
to Theorem 2 with α = 1.
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5 Fully Quenched Behavior in a Simplified Model

Although the moment asymptotics of the semi-annealed quasi-stationary Anderson par-
abolic problem that we consider here is similar to that of the stationary Anderson parabolic

problem with potential V 2(x)

2 , the two models are in fact quite different. The fully quenched
behavior of the quasi-stationary problem appears in fact to be closer to that of the non-
stationary Anderson parabolic problem with independent white noises at each site. On the
whole, the quasi-stationary problem has some features of the stationary problem and some
of the non-stationary one, as well as its own features.

It is worth to illustrate this point in a simple, explicitly solvable, model which we briefly
discuss in this paragraph. The leading term of the moment asymptotics as t → ∞ is in fact
reproduced even by extremely simplified versions.

Take, for instance, the case of constant potential V (x) = V0, for all x ∈ Z
d . The

Feynman–Kac representation (1.6) of the Stratonovich solution of (1.5) is u(t, x) = eV0Wt .

The semi-annealed moment (p = 1) is U(t, x) = 〈u(t, x)〉Pw = et
V 2

0
2 . The asymptotics is “al-

most” the same as for Th. 2 (compare with (4.15)), if V 2
0 /2 is large, a condition which in the

original model is a consequence of the space variation of the potential over a large volume.
Assuming that V 2

0 /2 is Weibull distributed, the annealed moment is 〈U(t)〉PV
= eH(t),

and the leading term is the same as for the real model (Th. 1). Observe that V 2
0 /2 is typically

large if the parameter c of the Weibull distribution is small, a condition which may here
mimic the absence of space variation.

For the quenched case we have lnu(t,x)

t
→ 0, as t → ∞, which is quite unrealistic, because

space fluctuations are totally absent.
To take into account space fluctuations we need at least two values of the potential. We

reduce the phase space Z
d to two points, i.e., to the set S2 := {0,1}, with periodic conditions.

The Laplacian on S2 is given by the matrix

L =
(−1 1

1 −1

)

and the quasi-stationary Anderson parabolic problem on S2 is

∂u

∂t
= κLu + V (x)ẇtu, u(0, x) ≡ 1, t ≥ 0, x ∈ S2, (5.1)

which is interpreted as equivalent to an integral equation of the type (1.6). The arguments in
Sect. 3 for bounded potentials give existence, uniqueness, and the Feynman–Kac represen-
tation (1.7) (where Xs is a random walk with generator κL). The semi-annealed moments
Up(t, x) = 〈(u(t, x))p〉Pw are given by the expressions (1.9), where X

(j)
s , j = 1, . . . , p are

independent random walks on S2. Taking p = 1, we see that U(t, x) := U1(t, x) is a solution
of the periodic problem

∂U(t, x)

∂t
= κLU(t, x) + ṼxU(t, x), U(0, x) ≡ 1, t ≥ 0, x ∈ S2, (5.2)

where we write for brevity Ṽx = V 2(x)/2. Equation (5.2) is a linear ODE for the vector
U(t) := (U(t,0),U(t,1)) of the form U̇ = AU with matrix

A =
(

Ṽ0 − κ κ

κ Ṽ1 − κ

)
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The asymptotic behavior of U(t) is determined by the leading eigenvalue λ0 of A:

λ0(Ṽ0, Ṽ1) = Ṽ0 + Ṽ1

2
− κ +

(
(Ṽ0 − Ṽ1)

2

4
+ κ2

) 1
2

. (5.3)

As shown by the following results, this simple model reproduces very closely the results of
the original one, if |Ṽ0 − Ṽ1| is large. (This condition, which in the original model is due
to space variation, can be mimicked, as explained above, by taking Ṽi , i = 0,1 independent
Weibull distributed with a small parameter c.)

Proposition 5.1 If |Ṽ0 − Ṽ1|/κ > ε−1, with ε << 1, then, as t → ∞, the solution of equa-
tion (5.2) with initial data U(0) = (1,1) has the following asymptotics

U(t, x) ∼ U(0) · e(0)e(0)
x eMt−κt (1+O(ε)), (5.4)

where M = max{Ṽ0, Ṽ1}, e(0)
x , x = 0,1, are the components of the normalized eigenvector

e(0)(Ṽ1, Ṽ2) corresponding to the eigenvalue λ0, and · denotes the scalar product.

Proof As U(0) · e(0) �= 0, U(t) ∼ U(0) · e(0)eλ0te(0), for large t . The proof then follows by
expanding the expression for λ0 in (5.3) for small κ

|Ṽ0−Ṽ1| . �

Proposition 5.2 If Ṽ0, Ṽ1 are independent and (α, c)-Weibull, then, for large t

〈U(t, x)〉PV
= eH(α,c)(t)−κt+o(t), x ∈ S2. (5.5)

Proof The lower bound 〈U(t, x)〉PV
≥ e−κt+H(α,c)(t) is obtained in the same way as in the

proof of Lemma 4.1.
For the upper bound we use, as for the semi-annealed asymptotics (5.4), the large t as-

ymptotics of U(t). We take δ(t) as in (4.13), and the proof follows the lines of (4.13), (4.14).
As λ0(u, v) ≤ max{u,v}, and |U(0) · e(0)| ≤ 2, we find

〈U(t, x)I{|Ṽ0−Ṽ1|≤δ(t)}〉PV
≤ 2

∫ ∞

0
φ(u)du

∫ u+δ(t)

u

φ(v)etvdv = o(eH(α,c)(t)−κt ).

If |Ṽ0 − Ṽ1| > δ(t) we have, as t → ∞, λ0(u, v) = max{u,v} − κ + o(1), so that

〈U(t, x)I{|Ṽ0−Ṽ1|>δ(t)}〉PV
≤ e−κt+o(t)

∫ ∞

0
φ(u)du

∫ ∞

u

φ(v)etvdv = eH(t)−κt+o(t). �

We proceed to study the fully quenched behavior for this model. Consider the solution
of (5.1) u(t, x) = Exe

∫ t
0 V (Xt−s )dws , and set ux(t) = u(t, x), Vx = V (x), x = 0,1. From the

expression of the increment of u0

u0(t + �t) = (1 − κ�t)eV0�wu0(t) + κu1(t)�t + o(�t)

and a similar one for u1, we get the stochastic differential equation

du0 = V0u0dw +
(

V 2
0

2
− κ

)
u0dt + κu1dt,

du1 = V1u1dw +
(

V 2
1

2
− κ

)
u1dt + κu0dt.

(5.6)
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In analogy with the phase-amplitude formalism for the 1-d random Schrödinger operator,
we set v(t) = u0(t)+u1(t), p(t) = u0(t)

v(t)
, q(t) = u1(t)

v(t)
= 1 −p(t). By adding equations (5.6)

we find

dv = v

[
(V0p + V1q)dw + V 2

0 p + V 2
1 q

2
dt

]
. (5.7)

The Ito formula dF(u, v) = Fudu+Fvdv + 1
2Fuudu2 + 1

2Fvvdv2 +Fuvdudv gives dp =
d(u0/v) = du0/v − u0dv/v2 − du0dv/v2 + u0(dv)2/v3, and, after some computations we
get

dp = p q(V0 − V1)dw − p − q

2
[(V0 − V1)

2pq + 2κ]dt. (5.8)

Equation (5.8) shows that the diffusion process p(t) in the interval [0,1] cannot reach the
edges (pq = 0) and has a unique invariant measure π . From (5.7), setting V̄ (s) = V0p(s) +
V1q(s), we get

lnv(t) =
∫ t

0
V̄ (s)dws + 1

2

∫ t

0
[V 2

0 p(s) + V 2
1 q(s)]ds − 1

2

∫ t

0
V̄ 2(s)ds

=
∫ t

0
V̄ (s)dws + 1

2

∫ t

0
[(V0 − V̄ (s))2p(s) + (V1 − V̄ (s))2q(s)]ds. (5.9)

An immediate consequence of formula (5.9) is the following result.

Proposition 5.3 As t → ∞, the following limit holds, Pw-a.s.,

lim
t→∞

lnv(t)

t
= γ := 1

2
〈(V0 − V̄ )2p + (V1 − V̄ )2q〉π , (5.10)

where π is the invariant measure for the diffusion process p(t) given by (5.8).

Equation (5.8) shows that if |V0 − V1| is large there is a drift to the point p = 1/2, which
is large unless p ≈ q ≈ 1/2, and vanishes for p = 1/2. Hence π is concentrated near the
point p = q = 1/2 and γ ≈ (V0 − V1)

2/8. On the basis of this result we can formulate a
conjecture on the fully quenched behavior of the original model.

Let us assume that the variables V (x) have a symmetric Weibull distribution, i.e., their
distribution is symmetric and such that V 2(x)/2 are (α, c)-Weibull variables. For the leading
term of the fully quenched asymptotics of the model on Z

d , we can then formulate, as a
conjecture, the following result.

Theorem 3 As t → ∞, the solution of the quasi-stationary Anderson Parabolic Problem
(3.2) has the following asymptotics, Pw × PV -a.e.

lnu(t, x) ∼ t max
|x−x′|=1
|x|,|x′|≤κt

(V (x) − V (x ′))2

8
= Ĉd ln

1
α t (1 + o(1)), (5.11)

where Ĉd = 2− 1
α Cd .

About the proof of this statement, which, as we said, will be the object of future work,
we may say that the lower estimate is given by a simple generalization of the argument for
the two-point model.
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The upper estimate is, as usual, harder. The analysis of the next term is also important,
as it gives relevant information on the quenched behavior of u(t, x).

Remark The value of Ĉd is obtained by an analogue of Lemma 2.3. In fact, as the density

of Vi , i = 0,1 is ϕ(x) = 2−αc|x|2α−1e−c x2α

2αα , x ∈ R, one finds for large a > 0

lnP

({
(V1 − V2)

2

2
> a

})
∼ − caα

22α−1α
.
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